Catalog & Technical Data Sheet

Introduction to Flyho Anti-Drip Solutions

Eversun Polycarbon Sci&Tech Corp.,LTD.

1.0版 2023.2

Flyho Anti-Drip brief introduction

Flyho Anti-Drip" is a brand of anti-drip solution created by EVERSUN for customer optimization. The product is made through the use of selected materials and a special method made 217-nanometer polytetrafluoroethylene emulsion with a highly matched coating material, produced by a PLC automatic control system. The product logo is "Flying Monkey Clouds", as a new member trademark of EVERSUN family.

Flyho Anti-Drip, trademark

Research and development: A team of four doctoral graduates led the research and development, which lasted a year and a half, and conducted in-depth research on domestic and foreign antidrip products. The formula system and production process were comprehensively upgraded from micro to macro scales, as well as in the application field, and the quality has reached the industry's leading standards.

Instrumentation: Seven imported precision testing instruments and a central control system, as well as eight PLC automatic production equipment.

Product features: weather resistance, high gloss, high efficiency, and long durability

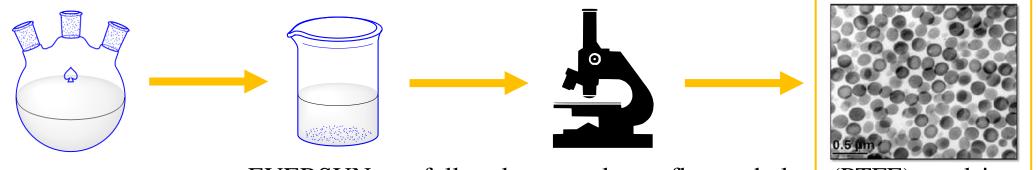
Flyho Anti-Drip brief introduction: Our Growth Journey

- 2013 EVERSUN collaborated with South China University of Technology to develop an anti-dripping agent.
- 2015 EVERSUN's Zhongshan plant has officially started production of the anti-dripping agent.
- 2017 EVERSUN has successfully developed heat-resistant and high-gloss anti-dripping agents, successively.
- 2019 EVERSUN relocated our production to the Humen factory.
- 2022 EVERSUN'S Yunfu manufacturing base has officially been completed and is now in operation, and designed production capacity is 4,000 tons per year.
- 2022 EVERSUN has officially designed the anti-dripping agent brand named "Flyho Anti-Drip".

Application Overview

- FR-PC、FR-PC/ABS、FR-ABS、FR-HIPS、FR-PC/PBT market
- Flyho Anti-Drip series of products are widely used in various industries such as smartphones, new energy vehicles, home appliances, office equipment, electronics, and electrical equipment. In these applications, our anti-dripping agents are required to have the following performance requirements:
- Flame retardancy: Able to synergistically flame retard and effectively prevent combustion and dripping;
- Processing: Characteristics of no hemp spots, no silver streaks, high gloss, and easy processing.

• We are committed to providing customers with safer and more reliable anti-dripping agents to meet the demand for high-quality products in various application areas.



Flyho preparation structure and production

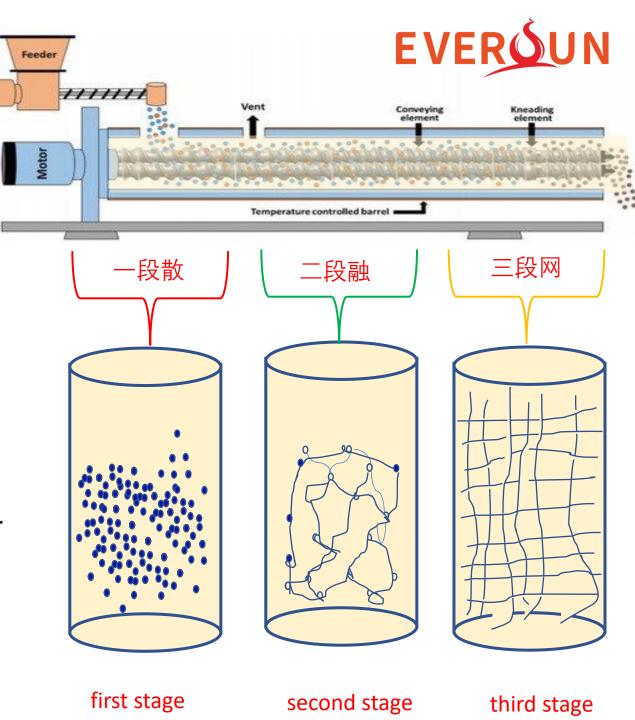
Shell

EVERSUN carefully selects a polytetrafluoroethylene (PTFE) emulsion with a

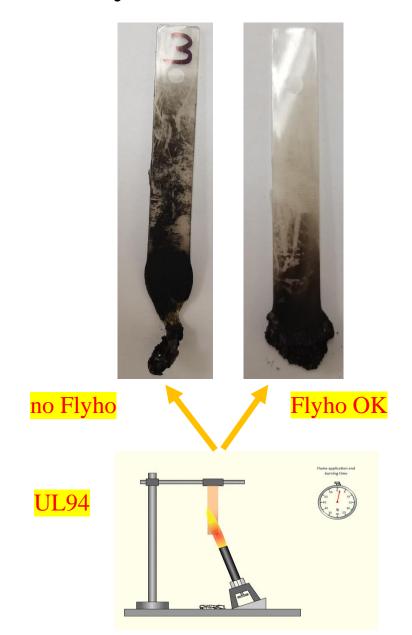
uniform particle size of 217 nanometers, and innovatively uses Acrylic/X, MS/X, and

AS/X resins. Through sophisticated synthesis processes and PLC-controlled

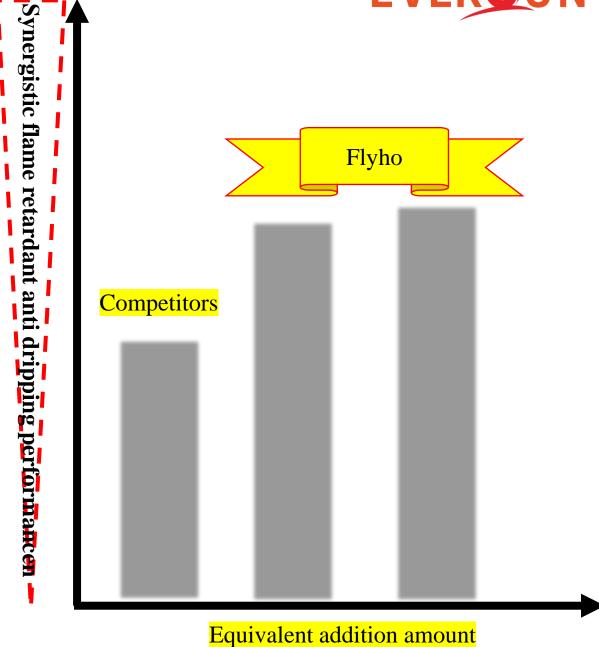
production equipment, we produce the Fei Hou Kang Di (Flying Monkey Anti-Drip)


product with a "core-shell" structure. This product has the core

characteristics of "first stage dispersion, second stage melting, and third stage network" during use, which makes, it have excellent dispersibility and stable anti-dripping effect.


Flyho how to work

During the screw granulation process, Flyho Anti-Dripping achieves its anti-dripping effect through a threestage process:


In the first stage, based on the characteristics of the Flyho Anti-Dripping shell material, it will disperse in the substrate. *In the second stage*, based on the uniform 217nanometer particle size of the Flyho Anti-Dripping nucleus and the shell material, it uniformly distributes in a molten state with the substrate, maintaining a capsule-like. microstructure and gradually forming a chain-like structure. In the third stage, the capsule-like Flyho Anti-Dripping undergoes shear and forms an interwoven and coherent mesh structure

Flyho efficacy

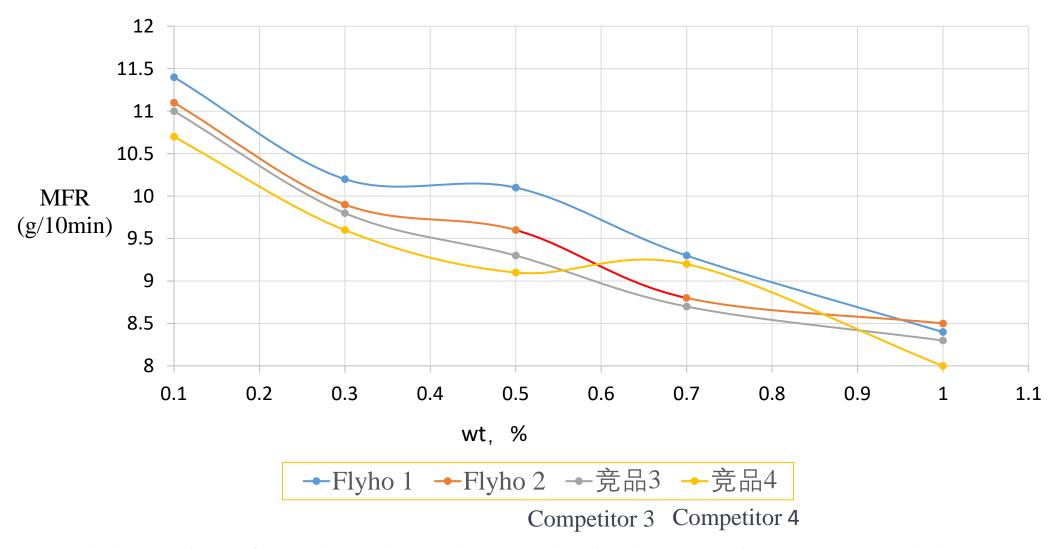

Flyho Application recommendation

Item	Trung	Flyho 1	Fly	ho 2	Flyho 3				
Item	Type	K-PT107	K-PT201	K-PT202	K-PT301	K-PT302	K-PT303		
Structrue	Shell-material	acrylic	MS	MS	acrylic	AS	MS		
	Core cont, wt %	50	50	50	50	60	70		
	Mole-weight, Mn	++++	+++++	++++	++++	++++	++++		
	PC	+++++	+++++	+++++	+++++	+++	+++		
	PC+GF	+++++	+++++	+++++	+++++	+++	+++		
Effect	PC-Alloy	+++++	+++++	+++++	+++++	+++	+++		
	ABS	++++	+++++	+++++	+++++	+++++	+++++		
	HIPS	++++	+++++	+++++	+++++	+++++	+++++		
	PBT	+++	++++	++++	+++++	+++++	+++++		
	PE/PP	++	+++	+++	+++	++++	+++++		
	PPO/PS	++	++++	++++	+++++	+++++	+++++		
	PA	++	+++	+++	++++	+++++	+++++		
	Dispersibility	0000	0000	00000	00000	0000	0000		
Feature	Timeliness	0000	00000	0000	00000	00000	00000		
	Gloss	0000	0000	00000	00000	00000	000		
	Thermo-toleran	0000	00000	0000	00000	00000	0000		
	Anti-dripping	0000	0000	0000	00000	00000	00000		
	PFOA、PFOS、OP、 OPEO、NP、NPEO	ND	ND	ND	ND	ND	ND		
	REACH	pass	pass	pass	pass	pass	pass		
Environ-tes	Robs	nass	nass	nass	nass	nass	nass		

Flyho recommended usage and dosage

Flyho dosage of PC and flame retardancy

D DC	111BR	75%							
Raw PC	1250WP	25%							
Retardants	KFR-KKS-A2 0.5%								
Anti-dripping	Flyho 1#	Flyho 2#	竞品4						
Dosage	0.1%								
T1+T2 (S)	48.35	39.82 30.82		36.17					
UL94	V2	V2	V2	V2					
Dosage	0.3%								
T1+T2 (S)	48.9	36.85	48.9	65.61					
UL94	V0	V0	V2	V1					
Dosage	0.5%								
T1+T2 (S)	33.35	31.28	37.56	35.85					
UL94	V0	V0	V0	V0					
Dosage	0.7%								
T1+T2 (S)	27.14	25.89	30.63	31.39					
UL94	V0	V0	V0	V0					
Dosage	1%								
T1+T2 (S)	38.27	36.41	41.81	44.61					
UL94	V0	V0	V0 V0						

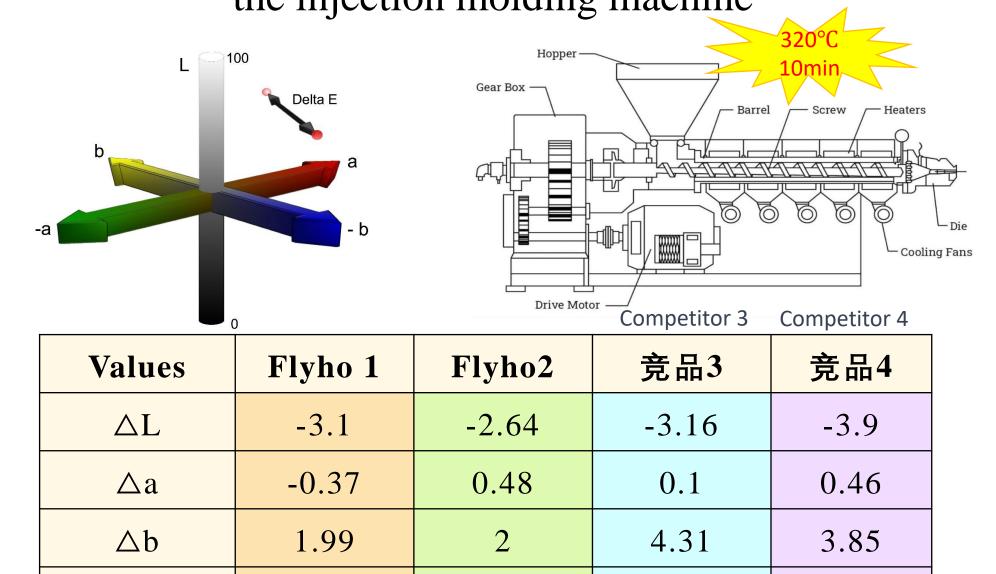

Flyho relationship between dosage and properties

Raw PC	111BR	75%										
Raw PC	1250WP	25%										
Retardant	KFR- KKS-A2	0.8%										
Anti-dripping	Flyho 1#	Flyho 2#	竞品3	竞品4	Flyho 1#	Flyho 2#	竞品3	竞品4	Flyho 1#	Flyho 2#	竞品3	竞品4
Dosage		0.19	0.5%				1.0%					
MFR (g/10min)	11.4	11.1	11.0	10.5	10.1	9.6	9.3	9.9	8.4	8.5	8.8	8.8
ASTM D256 (J/m)	796	801	839	850	828	845	815	843	872	829	866	856
$GB/T1843$ (KJ/m^2)	74.5	73	76.3	74.7	72.9	78.7	75.9	71.8	77.8	79.4	80.4	73.3
Tensile (MP)	70.9	70.1	70.5	70.3	70.1	68.9	69.9	69.3	71.9	71.2	69	68.4
Elongation(%)	141	141	138	141	139	138	139	139	148	145	136	135
Dosage		0.3%			0.7%							
MFR (g/10min)	10.2	9.9	9.8	10.5	9.3	8.6	8.7	9.3				
ASTM D256 (J/m)	848	858	855	843	796	829	832	819				
冲击国标(KJ/m²)	76.0	74.8	74.3	75.6	76.1	76.6	76.1	75.1				
拉伸强度(MP)	69.3	68.5	67.3	72.2	68.6	68.7	65.2	69.4				
断裂伸长率(%)	137	133	128	130	138	140	126	131				

Equivalent addition, Flyho has better retention of physical properties

Flyho Relationship between dosage and physical properties

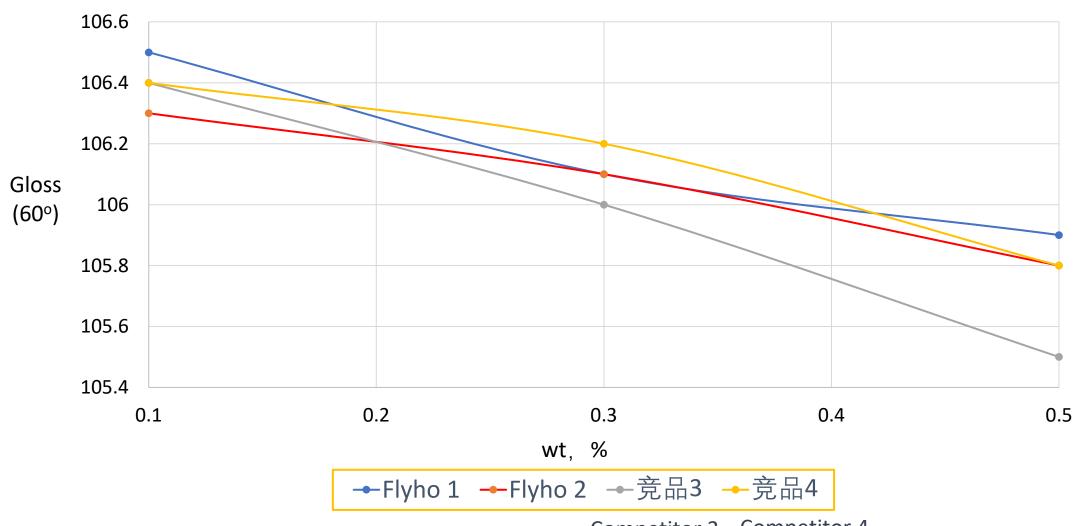
Flyho series of products have better physical properties at an equal dosage


Flyho thermal resistance

200°C 4hr Flyho \triangle E mean value 29 and \triangle E mean value 34.

Flyho 320°C heat stability during 10 minutes of retention time in the injection molding machine

3.34


 ΔE

3.7

5.35

5.51

Flyho glossiness at 60° with varying levels of addition

Competitor 3 Competitor 4 Flyho more stable highlight performance with equivalent addition